Tehran - FNA
Iranian researchers from Tarbiat Modarres University changed the liposome production process and increased the amount of genes entrapped in the structure of these nanocarriers.
The non-virus nanocarriers have neutral structure and very high stability and they protect entrapped genes against degrading enzymes.
In this research, some changes were made in the synthesis of liposomes and nanocarriers were produced that can entrap DNA molecules with very high efficiency (98%) in their absolutely neutral structure. The results have so far been reported only for cationic liposomes that are highly toxic and can only be used in-vivo.
The nanostructure is very stable, to the extent that no release of DNA has been observed from it after six months. DNA is trapped in aqueous environment inside the liposome. Therefore, degrading enzymes are not able to degrade DNA molecule, and as a result, DNA has very high stability inside the structure.
Among other advantages of the designed nanocarrier, mention can be made of its very high ability in gene delivery to bacterium cell. Therefore, it can be used in the treatment of infections caused by bacteria, which are resistant to medications. The nanostructure can also be used as an appropriate carrier to delivery medications in the treatment of human diseases. The research team is currently carrying out studies on gene delivery to bacterium cells through this system.
Taking into account the obtained results, the researchers are hopeful that liposomes derived from cellular membrane will have important role in drug and gene delivery in the near future; therefore, they will take the place of toxic cationic carriers that are currently used.