Scientists discovered long history of interbreeding among at least four different types of early humans living in Europe and Asia dating back 50,000 years ago. The most complete sequence to date of the Neanderthal genome has been discovered by using DNA extracted from a woman's toe bone that dates back 50,000 years, according to University of California, Berkeley, scientists. Population geneticist Montgomery Slatkin, graduate student Fernando Racimo and post-doctoral student Flora Jay were part of an international team of anthropologists and geneticists who generated a high-quality sequence of the Neanderthal genome and compared it with the genomes of modern humans and a recently recognized group of early humans called Denisovans. The comparison shows that Neanderthals and Denisovans are very closely related, and that their common ancestor split off from the ancestors of modern humans about 400,000 years ago. Neanderthals and Denisovans split about 300,000 years ago. Though Denisovans and Neanderthals eventually died out, they left behind bits of their genetic heritage because they occasionally interbred with modern humans. The research team estimates that between 1.5 and 2.1 percent of the genomes of modern non-Africans can be traced to Neanthertals. Denisovans also left genetic traces in modern humans, though only in some Oceanic and Asian populations. The genomes of Australian aborigines, New Guineans and some Pacific Islanders are about 6 percent Denisovan genes, according to earlier studies. The new analysis finds that the genomes of Han Chinese and other mainland Asian populations, as well as of native Americans, contain about 0.2 percent Denisovan genes. The genome comparisons also show that Denisovans interbred with a mysterious fourth group of early humans also living in Eurasia at the time. That group had split from the others more than a million years ago, and may have been the group of human ancestors known as Homo erectus, which fossils show was living in Europe and Asia a million or more years ago. "The paper really shows that the history of humans and hominins during this period was very complicated," said Slatkin, a UC Berkeley professor of integrative biology. "There was lot of interbreeding that we know about and probably other interbreeding we haven't yet discovered." The genome analysis will be published in the Dec. 19 issue of the journal Nature. Slatkin, Racimo and Jay are members of a large team led by former UC Berkeley post-doc Svante Pääbo, who is now at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany.
GMT 20:46 2018 Tuesday ,23 January
New app to help Indians apply for UAE jobs visaGMT 21:37 2018 Sunday ,14 January
Champagne box-sized satellite launchedGMT 21:32 2018 Sunday ,14 January
Man's best friend goes high techGMT 16:11 2018 Friday ,12 January
UAE Research Programme for Rain Enhancement Science leads the way to new scientific and technological horizonsGMT 09:35 2018 Tuesday ,09 January
SpaceX launches secretive Zuma missionGMT 21:38 2018 Friday ,05 January
Our reliance on technology is having an effect on us allGMT 07:47 2017 Sunday ,24 December
China jails VPN owner for over five yearsGMT 20:59 2017 Saturday ,25 November
Now make unlimited voice, video calls in UAE for Dh50Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor