To help people with hormone deficiencies, scientists developed a potential new therapy based on an unlikely model: immune molecules from cows.
Their research, published recently in the journal Proceedings of the National Academy of Sciences, shows that human hormones and antibodies can be fused together -- mimicking long, stalk-like cow antibodies.
The new study, whose senior authors were Peter Schultz, the Scripps Family Chair Professor at TSRI, and Feng Wang, a principal investigator at the California Institute for Biomedical Research (Calibr), could also provide the foundation for treatments for a range of other diseases.
"We were inspired by this unique structure found in nature, and we assembled an antibody that might one day benefit humans," said TSRI Research Associate Tao Liu, co-first author of the new study with Yong Zhang at Calibr.
Many people need injections of human growth hormone (hGH) to combat conditions such as Turner syndrome (which causes short stature in females), low birth weight and other hormone deficiencies. Unfortunately, the body degrades hGH quickly, sometimes within 30 minutes.
"This means people need to inject themselves every day," explained Liu. "For a kid, that's really painful -- and for a drug, that's really bad."
Antibodies, however, can last for weeks in the body. In the new study, the researchers drew inspiration from a bovine antibody study published by TSRI scientists in 2013. The bovine antibody has an unusual structure -- a round base with a long amino-acid "stalk" pointing out. On the top of the stalk is a "knob region" that presumably binds to pathogens.
The researchers wondered whether they could switch the knob region with DNA from a human hormone, such as hGH. To test this theory, they used recombinant DNA technology to fuse hGH to a coiled version of the bovine antibody's stalks.
This fusion was stable and maintained the function of hGH, so they next tried making an antibody-hormone molecule without any cow DNA, so that the molecules might someday be applied in human therapy. They used the humanized anti-cancer antibody Herceptin as the antibody base in the new treatment.
The researchers then tested their antibody-hGH molecule in rat models. They found that hGH-deficient rats that received the treatment grew normally. In fact, the treated rats only needed injections two times a week to grow, compared with daily injections for rats given hGH without the antibody base.
"It acts just like the normal growth hormone," said Liu. "This means the treatment might only need to be injected once a week or even once a month in humans. It would be so much easier for patients."
To further test their method, the researchers attached Herceptin to leptin, a hormone that regulates body weight. They showed that the antibody-leptin molecule was just as effective in mice as natural leptin -- and it didn't have to be injected as often. Subsequent experiments showed no harmful side effects from the treatments.
The research team is working to optimize the treatment for potential use in humans, and Liu hopes the method could someday deliver longer-lasting doses of hGH -- or maybe even insulin to treat type 2 diabetes -- to patients in need.
GMT 20:46 2018 Tuesday ,23 January
New app to help Indians apply for UAE jobs visaGMT 21:37 2018 Sunday ,14 January
Champagne box-sized satellite launchedGMT 21:32 2018 Sunday ,14 January
Man's best friend goes high techGMT 16:11 2018 Friday ,12 January
UAE Research Programme for Rain Enhancement Science leads the way to new scientific and technological horizonsGMT 09:35 2018 Tuesday ,09 January
SpaceX launches secretive Zuma missionGMT 21:38 2018 Friday ,05 January
Our reliance on technology is having an effect on us allGMT 07:47 2017 Sunday ,24 December
China jails VPN owner for over five yearsGMT 20:59 2017 Saturday ,25 November
Now make unlimited voice, video calls in UAE for Dh50Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor