The first use of biological proteins to maneuver chemical polymers has created nerve-like structures that could serve as a gentler interface between nerves and prosthetic devices.
"This is the first demonstration of naturally occurring proteins assembling chemically created polymers into complex structures that modern machinery can't duplicate," said Sandia National Laboratories researcher George Bachand.
Sandia co-researcher Wally Paxton said, "This is foundational science, but one possibility we see, way down the road, is to use soft artificial structures like these to painlessly interface with the body's nerve structures."
Currently, rigid electrodes that cause inflammation are used to penetrate nerve tissue trying to communicate with an artificial limb, he explained. Instead, in a future application, the polymer network could be used extend the nerve, providing a gentler prosthetic interface.
Proteins like Disney's enchanted brooms
Creation of the neural structure, unachievable by normal manufacturing techniques, begins by altering the behavior of kinesin motor proteins -- biological machines found in every human cell. These tiny motors normally tote material from one part of a cell to another, carrying them on what, in video graphics, is portrayed as a vertical body with two legs. These stride along protein microtubules that form the cell structure. The purposefulness of the motors resembles that of the spellbound brooms in Disney's Fantasia, relentlessly carrying buckets of water up the castle stairs.
Turning natures' machinery on its head, the researchers used known techniques to glue the "shoulders" of kinesin motors to a glass substrate. This prevents their bodies from travelling, but their "legs" above them continue their vigorous movements. These pass microtubules above them, like an audience crowdsurfing entertainers on upraised hands.
In the next laboratory step, these travelling protein microtubules, microns in length, encounter relatively large polymer spheres, tens of microns in diameter, inserted by the researchers.
"At that point, we have structures that want to do work -- the kinesin-powered microtubules -- and something they want to do work on -- the spheres," Paxton said.
The microtubules, pre-coated with a sticky substance, pinch off polymer nanotubes from the sphere that lengthen as the kinesin motors travel on. The process resembles stringy strands of cheese lengthening as a piece of pizza is removed from a pan, said Paxton.
As the nanotubes lengthen and crosslink, they form structures complex enough to bring to mind the lights of a city seen at night from an airplane at high altitude. The networks range from hundreds of micrometers to tens of millimeters in total size and are composed of tubes 30 to 50 nanometers in diameter.
"One goal of our work is to make an artificial, highly branched neural structure," said Bachand. "The next step is, can we wire them together? The answer is, the motors should do it naturally. And two such networks, joined together, would have self-healing built into them. The motors never stop running until they run out of fuel. A neural branch breaks, and then a motor can act on that area to produce a new branch."
The insertion of quantum dots also proved stable, which means that light could be used to carry information through the structure as well as electricity.
GMT 10:28 2018 Friday ,19 January
Amazon narrows list of 'HQ2' candidates to 20GMT 09:04 2018 Thursday ,18 January
China to step up cryptocurrency crackdownGMT 08:32 2018 Sunday ,14 January
Japan's new crypto-currency crooners sing the bitcoin beatsGMT 09:22 2018 Friday ,12 January
Top European chefs take electric pulse fishing off the menuGMT 20:15 2018 Tuesday ,09 January
ADGM and Bahrain EDB agree to collaborate on fintechGMT 13:45 2018 Tuesday ,09 January
Apple urged to shield kids from iPhone addictionGMT 00:14 2018 Monday ,08 January
John Young, who set records in space sub: with NASA, is dead at 87GMT 08:31 2017 Friday ,21 July
Samsung heiress ordered to pay $7.6 millionMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor