blocked holes enhance rather than stop light
Last Updated : GMT 05:17:37
Emiratesvoice, emirates voice
Emiratesvoice, emirates voice
Last Updated : GMT 05:17:37
Emiratesvoice, emirates voice

Blocked holes enhance rather than stop light

Emiratesvoice, emirates voice

Emiratesvoice, emirates voice Blocked holes enhance rather than stop light

Tehran - Fna

Conventional wisdom would say that blocking a hole would prevent light from going through it, but engineers have discovered the opposite to be true. A research team has found that placing a metal cap over a small hole in a metal film does not stop the light at all, but rather enhances its transmission. In an example of the extraordinary twists of physics that can occur at very small scales, Princeton University electrical engineer Stephen Chou and colleagues made an array of tiny holes in a thin metal film, then blocked each hole with an opaque metal cap. When they shined light into the holes, they found that as much as 70 percent more light came through when the holes were blocked than when they were open. \"The common wisdom in optics is that if you have a metal film with very small holes and you plug the holes with metal, the light transmission is blocked completely,\" said Chou, the Joseph Elgin Professor of Engineering. \"We were very surprised.\" Chou said the result could have significant implications and uses. For one, he said, it might require scientists and engineers to rethink techniques they have been using when they want to block all light transmission. In very sensitive optical instruments, such as microscopes, telescopes, spectrometers and other optical detectors, for example, it is common to coat a metal film onto glass with the intention of blocking light. Dust particles, which are unavoidable in metal film deposition, inevitably create tiny holes in the metal film, but these holes have been assumed to be harmless because the dust particles become capped and surrounded by metal, which is thought to block the light completely. \"This assumption is wrong -- the plug may not stop the leakage but rather greatly enhance it,\" Chou said. He explained that in his own field of nanotechnology, light is often used in a technique called photolithography to carve ultrasmall patterns in silicon or other materials. Thin metal film patterns on a glass plate serve as a mask, directing light through certain locations of the plate and blocking other locations. Given the new finding, engineers ought to examine whether the mask blocks the light as expected, Chou said. Conversely, Chou said, the newly discovered \"blocking\" technique might be used in situations when a boost in light transmission is desired. In near-field microscopy, for example, scientists view extremely fine details by passing light through a hole as tiny as billionths of a meter in diameter. With the new technique, the amount of light passing through the hole -- and thus the amount of information about the object being viewed -- can be increased by blocking the hole. Chou and colleagues stumbled on the phenomenon of enhanced light transmission through a blocked hole in their research on developing ultrasensitive detectors that sense minute amounts of chemicals, with uses ranging from medical diagnostics to the detection of explosives. These detectors use a thin metal film with an array of holes and metal disks to boost faint signals produced when laser light encounters a molecule, allowing much greater sensitivity in identifying substances. In one of their experimental detectors, the researchers studied transmission of light through an array of tiny holes that were 60 nanometers (billionths of a meter) in diameter and 200 nanometers apart in a gold film that was 40 nanometers thick. Each tiny hole was capped with a gold disk that was 40 percent larger than the hole. The disks sat on top of the holes with a slight gap between the metal surface and the disks. The researchers pointed a laser at the underside of the film and tested to see if any of the laser light went through the holes, past the caps, and could be detected on the other side. To their surprise, they found that the total light transmission was 70 percent higher with the holes blocked by the metal disks than without blockers. The researchers repeated the same experiment shining the light in the opposite direction -- pointing at the side with the caps and looking for transmitted light under the film -- and found the same results. \"We did not expect more light to get through,\" Chou said. \"We expected the metal to block the light completely.\" Chou said the metal disk acts as a sort of \"antenna\" that picks up and radiates electromagnetic waves. In this case, the metal disks pick up light from one side of the hole and radiate it to the opposite side. The waves travel along the surface of the metal and leap from the hole to the cap, or vice versa depending on which way the light is traveling. Chou\'s research group is continuing to investigate the effect and how it could be applied to enhance the performance of ultrasensitive detectors. The researchers published their findings Oct. 7 in the journal Optics Express, and it quickly became one of the most downloaded papers. In addition to Chou, the team included graduate student Wen-Di Li and postdoctoral researcher Jonathan Hu in the Department of Electrical Engineering. The work is sponsored in part by the Defense Advanced Research Agency and the National Science Foundation.  

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

blocked holes enhance rather than stop light blocked holes enhance rather than stop light

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

blocked holes enhance rather than stop light blocked holes enhance rather than stop light

 



GMT 13:10 2017 Thursday ,04 May

Russia, Turkey, sign pact on safe zones in Syria

GMT 07:32 2012 Tuesday ,24 January

Inkless Graphite Quill, last up 9 years

GMT 12:38 2014 Wednesday ,04 June

Messi world's most valuable player

GMT 08:42 2012 Thursday ,06 September

Latest Gigaset touch phone now in Qatar

GMT 14:56 2017 Monday ,31 July

Daesh claims attack on Iraq embassy in Kabul

GMT 11:13 2016 Wednesday ,12 October

And it’s a wrap at Arab Fashion Week!

GMT 09:56 2018 Wednesday ,17 January

Tripoli flights still suspended after fighting

GMT 10:52 2017 Friday ,29 September

May says 'very good progress' on citizens' rights

GMT 15:40 2018 Monday ,01 January

Dora: Her role in new drama is surprise

GMT 07:54 2017 Thursday ,23 November

Saeed Hasban hails achievement

GMT 09:13 2017 Saturday ,16 September

Facebook to decide who can cash in on ads
 
 Emirates Voice Facebook,emirates voice facebook  Emirates Voice Twitter,emirates voice twitter Emirates Voice Rss,emirates voice rss  Emirates Voice Youtube,emirates voice youtube  Emirates Voice Youtube,emirates voice youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

emiratesvoieen emiratesvoiceen emiratesvoiceen emiratesvoiceen
emiratesvoice emiratesvoice emiratesvoice
emiratesvoice
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
emiratesvoice, Emiratesvoice, Emiratesvoice