molecular sieves harness ultraviolet irradiation
Last Updated : GMT 05:17:37
Emiratesvoice, emirates voice
Emiratesvoice, emirates voice
Last Updated : GMT 05:17:37
Emiratesvoice, emirates voice

Molecular sieves harness ultraviolet irradiation

Emiratesvoice, emirates voice

Emiratesvoice, emirates voice Molecular sieves harness ultraviolet irradiation

London - Arab Today

Latest research uses membrane technology for ‘energy efficient’ gas separation - a crucial part of many major industrial processes and important focus for increased sustainability in global energy production.New research shows that exposing polymer molecular sieve membranes to ultraviolet (UV) irradiation in the presence of oxygen produces highly permeable and selective membranes for more efficient molecular-level separation, an essential process in everything from water purification to controlling gas emissions. Published in the journal Nature Communications, the study finds that short-wavelength UV exposure of the sponge-like polymer membranes in the presence of oxygen allows the formation of ozone within the polymer matrix. The ozone induces oxidation of the polymer and chops longer polymer chains into much shorter segments, increasing the density of its surface. By controlling this ‘densification’, resulting in smaller cavities on the membrane surface, scientists have found they are able to create a greatly enhanced ‘sieve’ for molecular-level separation - as these ‘micro-cavities’ improve the ability of the membrane to selectively separate, to a significant degree, molecules with various sizes, remaining highly permeable for small molecules while effectively blocking larger ones. The research from the University of Cambridge’s Cavendish Laboratory partly mirrors nature, as our planet’s ozone layer is created from oxygen hit by ultraviolet light irradiated from the sun. Researchers have now demonstrated that the ‘selectivity’ of these newly modified membranes could be enhanced to a remarkable level for practical applications, with the permeability potentially increasing between anywhere from a hundred to a thousand times greater than the current commercially-used polymer membranes. Scientists believe such research is an important step towards more energy efficient and environmentally friendly gas-separation applications in major global energy processes - ranging from purification of natural gases and hydrogen for sustainable energy production, the production of enriched oxygen from air for cleaner combustion of fossil fuels and more-efficient power generation, and the capture of carbon dioxide and other harmful greenhouse gases. “Our discoveries lead to better understandings of physics of the novel materials, so we will be able to develop better membranes in the future\" said Qilei Song, a researcher in Dr Easan Sivaniah’s group and the paper\'s lead author. In collaboration with groups at the Department of Materials Science and Metallurgy (Professor Tony Cheetham), University of Cambridge, and at the Chemical Engineering department of Qatar University (Prof. Shaheen Al-Muhtaseb), the researchers confirmed that the size and distribution of free volume accessible to gas molecules within these porous polymeric molecular sieves could be tuned by controlling the kinetics of the ultraviolet light-driven reactions. Conventional separation technologies, such as cryogenic distillation and amine absorption, are significantly energy-intensive processes. Membrane separation technology is highly attractive to industry, as it has the potential to replace conventional technologies with higher energy efficiency and lower environmental impacts. But gas separation performance of current commercially-available polymer membranes are subject to what scientists describe as “a poor trade-off” between low permeability levels and high degree of selective molecular separation. The next generation membranes – such as polymers of intrinsic microporosity (PIMs) - being studied at the Cavendish are based on tuning the pore size and interaction with specific molecules to achieve both high permeability and, critically, high selectivity. Currently, these flat-sheet membranes show great separation performance and are mechanically robust for clean cylinder gases. “We are working on ways to further improve these membranes and our next step is to develop large scale and more practical industrial modules such as thin film composite membranes or hollow fibers with selective layer as thin as possible,” said Dr Easan Sivaniah. “We are also exploring many other applications of these fascinating polymer materials, such as liquid and vapour separation, water treatment by desalination, sensor devices and photolithography technology, and energy storage applications\". - See more at: http://www.cam.ac.uk/research/news/molecular-sieves-harness-ultraviolet-irradiation-for-greener-power-generation#sthash.azpVXCSF.dpuf

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

molecular sieves harness ultraviolet irradiation molecular sieves harness ultraviolet irradiation

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

molecular sieves harness ultraviolet irradiation molecular sieves harness ultraviolet irradiation

 



GMT 05:14 2024 Wednesday ,07 February

Sophisticated Classic Dining Room Design Ideas

GMT 17:49 2017 Sunday ,02 July

IFHRA takes big decision on jockeys

GMT 14:40 2017 Sunday ,24 December

Omani Shura Council delegation to visit Bahrain

GMT 12:28 2017 Thursday ,09 November

Commander-in-chief receives FDD delegation

GMT 18:08 2017 Thursday ,09 November

Louvre Abu Dhabi, first of its kind

GMT 14:46 2016 Saturday ,12 November

Bupa Arabia opens over-the-phone medical advice

GMT 12:25 2014 Monday ,11 August

Cake Boss Buddy Valastro wows crowd

GMT 11:03 2014 Thursday ,24 April

Afghan policeman shoots dead 3 US doctors

GMT 11:56 2014 Tuesday ,01 April

6 Afghan Taliban leaders killed in premature blast

GMT 10:45 2014 Tuesday ,02 September

Danes call Israel child-killer regime

GMT 10:38 2017 Wednesday ,29 November

Saudi job-generating commission prepares for1st forum

GMT 03:01 2017 Sunday ,24 September

Crew members of PIA refused hotel rooms in UK

GMT 19:49 2016 Thursday ,10 March

18 dead, 2 injured in car crash in South Sinai

GMT 10:05 2012 Thursday ,11 October

Egyptian scripts await freedom from censorship

GMT 12:32 2016 Friday ,02 September

Fox News Poll: Trump Narrows Clinton's Lead

GMT 22:34 2017 Saturday ,04 March

Syria says agenda agreed for next Geneva round
 
 Emirates Voice Facebook,emirates voice facebook  Emirates Voice Twitter,emirates voice twitter Emirates Voice Rss,emirates voice rss  Emirates Voice Youtube,emirates voice youtube  Emirates Voice Youtube,emirates voice youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

emiratesvoieen emiratesvoiceen emiratesvoiceen emiratesvoiceen
emiratesvoice emiratesvoice emiratesvoice
emiratesvoice
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
emiratesvoice, Emiratesvoice, Emiratesvoice